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Outline of the presentation

= Physiological changes in renal impairment

= PBPK modelling of RI
A. Nonrenally cleared drugs

B. Renally eliminated drugs
= System data needed for mechanistic kidney models
= Drug-transporter interaction in renal impairment - digoxin example



Renal elimination of drugs
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= Active uptake via OAT1/3, OCT2 paired with efflux transporters MRP2/4, MATES
= Proximal tubule cells also express drug metabolising enzymes

= Reabsorption - generally passive, active reabsorption via OAT4, PEPT1/2



Integrated bottom up and top down approach
for mechanistic prediction of CLy

Prediction _-~=* Clinical data -~~\In Vivo input
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Neuhoff S, Gaohua L, Burt H, Jamei M, Li L, Tucker G, et al. Accounting for Transporters in Renal Clearance: Towards a Mechanistic Kidney Model (Mech KiM).
In: Sugiyama Y, Steffansen B, editors. Transporters in Drug Development: Springer New York; 2013. p. 155-77.



Prediction of renal tDDIs and nephrotoxicity
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= Recent examples — cidofovir, rivaroxaban, metformin, lesinurad?-3

= In vitro transporter kinetic data and certain system parameters still sparse*

IHsu Clin Pharmacokinet 2014, 2Grillo BDD 2012, 3Burt EJPS 2016, 4Scotcher AAPS J 2016



Where we can expect PBPK modelling to
iInform drug labelling in the future?

= Large % of drug labels for FDA approved drugs in 2013-14 lack
dose recommendations in RI
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Information Availability
Utility of Model Based Approaches for Informing Dosing Recommendations in Specific

Populations: Report from the Public AAPS Workshop

Islam R. Younis, PhD?, J. Robert Powell, PharmD?, Amin Rostami -Hodjegan, PharmD, Jadhav J Clin Pharmacol 2015
PhD’, Brian Corrigan, PhD*, Norman Stockbridge, MD, PhD’, Vikram Sinha, PhD®, Ping . .
Zhao, PhD', Pravin Jadhav, PhD, MPH’, Bruno Flamion, MD, PhD?, Jack Cook, PhD* Younis J Clin Pharmacol 2016



Changes in system parameters in CKD

KIDNEYH ¥ CLg \ (LIVER?s3 A

! CL,, for nonrenally cleared drugs

! Qg and kidney weight
= Downregulation or inhibition of CYPs

I GFR - | activity OATP (SN-38)
Stages 1-5: =90 to <15 mL/min/1.73m? - L UGT1A9, -2B7
Changes in tubular surface area?
! Tubular secretion (G2 A
- I Transporter expression/activity _ o
- Inhibitory effect of uremic solutes + TGastric emptying time
- { Proximal tubule cell number - TpH _
" Expression of CYPs? )

%enal metabolism — UGT? /

1IFDA Renal impairment Guidance Z2Rowland Yeo Expert Rev Clin Pharmacol 2011 3Nolin Am J Kidney Dis 2003 4Scotcher AAPS J 2016
SHsueh Mol Pharm 2016 © Fujita Pharm Res 2014 7Zhao J Clin Pharmacol 2012 8Barnes Eur J Clin Pharmacol. 2014




Changes in plasma protein binding in CKD

GFR

Parameter Heathy <30 mL/min/1.73m?
Albumin (g/L) M 44.9 37.6
F 41.8 35.0
Hematocrit (%) M 43.0 39.7
F 38.0 33.2

= Other factors that may affect protein binding:
= Conformational changes in albumin structure/binding sites
= Competition for binding sites by uremic solutes
= Limited data suggest elevated a-acid glycoprotein

= Important to measure fu in Rl population for highly bound drugs

= = xIPT

[P X fu

1 Rowland Yeo Expert Rev Clin Pharmacol 2011



Systematic evaluation of the CKD effect on CYPs

CYP2D6 CYP3A4/3A5
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= CYP2D6-mediated clearance decreased in parallel with the severity of CKD

= No apparent relationship between the severity of CKD and CYP3A4/5-
clearance

Effect on CYP1A2, CYP2C8, CYP2C9 and CYP2C19 — Poster Tan et al.

Yoshida Clin Pharmacol Ther 2016



PBPK modelling of Rl - nonrenal CYP-

mediated clearance

= Retrospective analysis?! —
repaglinide, telithromycin, slidenafil

= CYP abundance in RI extrapolated
from clinical data

Bosutinib PBPK?2

= Step wise PBPK model development
and verification

= RI Virtual population:
I.  Reduced GFR, kidney weight and Qg
li. Reduced hepatic CYP3A4 expression

. Reduced serum albumin and hematocrit

1Zhao J Clin Pharmacol 2012 20no DMD 2017

Bosutinib Concentration
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Severe Rl —s.d.

Time after bosutinib dosing (h)



Effect of CKD on OATP
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= Decrease in clearance in parallel with CKD severity

= Challenges:
= Lack of binding data in RI subjects
= Overlap between CYP2C8 and OATP drugs

Poster Tan et al. - ITCW and ASCPT PT-020



PBPK modelling of Rl —renally eliminated drugs

System parameters for mechanistic kidney models -
healthy vs. RI?
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Tubular surface area — accounting for microvilli
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Tubular surface area - collecting duct requires
special consideration!

Cortical Collecting Ducts formed by merging of app. 10 tubules
(i.e. 900,000 nephrons/ kidney - 90,000 CCD/ kidney)

No merging in Outer Medulla Collecting Ducts
(i.e. 90,000 OMCD/ kidney)

Inner Medulla Collecting Ducts undergo successive
dichotomous fusions
(i.e. 90,000 IMCD/ kidney - 360 Ducts of Bellini/ kidney)

() 1/ 2,
doF
CX = (do XNCDO X T[)e dn

Scotcher, Eur J Pharm Sci 2016




Minimal tubular reabsorption model
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Scotcher, Eur J Pharm Sci 2016



Performance of the mechanistic tubular

reabsorption model —in vivo data from healthy

gmfe (% predicted within 3-fold of observed)

Proximal tubulg
only

( .
NO correction for

microvilli

Reabsorption
model

All drugs
(n = 45)

Low I:reab
(n=17)

Medium F,.,,
(n=12)

High F
(n = 16)

reab

2.17 (76%)

1.59 (94%)

1.44 (92%)

4.11 (44%)

N /

5.35 (27%)

5.02 (35%)

8.52 (17%)

4.03 (2

)

1.96 (87%)

1.97 (88%)
1.90 (92%)

2.01 (81%)

= Proximal tubule can be used as surrogate for low-med F, ., (<75%)

= Consideration of correct tubular surface area of key relevance



In vitro-in vivo
secretion

extrapolation of active renal

Increasing system complexity

Transfected cells
HEK, HelLa

Immortalised cells
LLC-PK1, ciPTEC,
HK-2

Primary cultured

renal tubule cells

Kidney slices

Kidney-on-a-chip

Scaling of kinetic parameters

REF (Vo /CLi0)

Tubular surface area (P,,,)

Proximal tubule cell number
(Vmax /CLint)
30 — 209 million PTC/ g kidney

Kidney weight (CL;,)

Scotcher et al , AAPS J, part| 2016



Implementation of transporter expression data
In PBPK models

Relative expression factor =

OAT3 expression i, iy, / OAT3 expression i, viiro

= Emerging proteomic data for renal transporters/UGTs

* Missing data:

= Large cohort of individuals and special populations
= Regional and species differences
= Expression vs. functional activity

= Current REFs — estimated using plasma or urinary excretion data

= 5.3 - HEK-OAT3 (pemetrexed)
= 2.3 - HEK-OCT2 (metformin)
= 3 -HEK-MATE1l (metformin)

Scotcher AAPS J 2016 Part Il; Prasad Drug Metab Dispos 2016; Knights Br J Clin Pharmacol 2016; Posada Drug
Metab Dispos 2015; Burt EJPS 2016



Renal PBPK models — special populations

System
Parameters
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Scotcher et al AAPS J 2016



Mechanistic digoxin kidney model: prediction of

CLk In moderate to severe renal impairment
b

£
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Existing PBPK model for digoxin incorporates transport by P-gp in liver and
intestine (Neuhoff et al, J Pharm Sci, 2013)

Consider role of P-gp and OATP4C1 (uptake) in kidney

Availability of clinical data in healthy, elderly and different stages of Rl



Development, verification and application of
digoxin mechanistic kidney model
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Scotcher et al, JPET 2017



Mechanistic digoxin kidney model: prediction
of CLy in renal impairment

Scenarios tested in digoxin model:

1. Reduction in GFR alone

2. Modification of both GFR and active secretion

a
b.

o

o

LOATPAC1 expression per million proximal tubule cells*
IP-gp expression per million proximal tubule cells*
! proximal tubule cellularity (PTCPGK)

LOATP4C1 expression or proximal tubule cellularity proportional
to changes in GFR

* Reflects also 4 transporter activity due to inhibition by uremic solutes

Scotcher et al, JPET 2017, ASCPT — Quantitative Pharmacology, PII-122



Prediction of digoxin CL; in moderate to severe
renal impairment —reduction in GFR

Assumption:
= NO changes in active secretion in renal impairment

300 -
Simulated (Healthy)

O Simulated (Moderate renal impairment)
+ Simulated (Severe renal Impairment)

250 { xobserved y = 0.89x+ 10.59
R? = 0.86

200 -
E 150 | Over-estimation
o of CLy In RI
100 -
50
4

0 50 100 150 200 250
GFR (mL/ min/ 1.73 m?)

Scotcher et al, JPET 2017



Mechanistic digoxin kidney model: prediction of
CLk In severe renal impairment

Additional mechanisms considered: i) { transporter expression or
i) ¥ number of tubular cells
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Mechanistic kidney model for digoxin:
renal impairment

= OATP4C1 abundance and PTCPGK parameters changed proportionally to
the change in GFR from the population representative
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Scotcher et al, JPET 2017



Take home message

Assumption that secretion does not change in renal impairment
over-estimated digoxin CLg

Different mechanisms considered for active secretion in RI-PBPK
model

Comparable NET effect on the predicted systemic exposure and CLg

Predicted dynamics inside proximal tubule cells different —
implications for nephrotoxicity or transporter-mediated DDIs

Integrated bottom up-top down approaches important for step-
wise RI-PBPK model development and verification
= Enhanced clinical trial design/adequate clinical data
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