

PBPK modeling of renal impairment – what is missing?

Aleksandra Galetin

Centre for Applied Pharmacokinetic Research, University of Manchester, UK

Outline of the presentation

- Physiological changes in renal impairment
- PBPK modelling of RI
 - A. Nonrenally cleared drugs
 - **B.** Renally eliminated drugs
 - System data needed for mechanistic kidney models
 - Drug-transporter interaction in renal impairment digoxin example

Renal elimination of drugs

- Active uptake via OAT1/3, OCT2 paired with efflux transporters MRP2/4, MATEs
- Proximal tubule cells also express drug metabolising enzymes
- Reabsorption generally passive, active reabsorption via OAT4, PEPT1/2

Integrated bottom up and top down approach for mechanistic prediction of CL_R

Neuhoff S, Gaohua L, Burt H, Jamei M, Li L, Tucker G, et al. Accounting for Transporters in Renal Clearance: Towards a Mechanistic Kidney Model (Mech KiM). In: Sugiyama Y, Steffansen B, editors. Transporters in Drug Development: Springer New York; 2013. p. 155-77.

Prediction of renal tDDIs and nephrotoxicity

- Recent examples cidofovir, rivaroxaban, metformin, lesinurad¹⁻³
- In vitro transporter kinetic data and certain system parameters still sparse⁴

¹Hsu Clin Pharmacokinet 2014, ²Grillo BDD 2012, ³Burt EJPS 2016, ⁴Scotcher AAPS J 2016

Where we can expect PBPK modelling to inform drug labelling in the future?

 Large % of drug labels for FDA approved drugs in 2013-14 lack dose recommendations in RI

Information Availability

Utility of Model Based Approaches for Informing Dosing Recommendations in Specific

Populations: Report from the Public AAPS Workshop

Islam R. Younis, PhD¹, J. Robert Powell, PharmD², Amin Rostami -Hodjegan, PharmD, PhD³, Brian Corrigan, PhD⁴, Norman Stockbridge, MD, PhD⁵, Vikram Sinha, PhD⁶, Ping Zhao, PhD¹, Pravin Jadhav, PhD, MPH⁷, Bruno Flamion, MD, PhD⁸, Jack Cook, PhD⁴

Jadhav J Clin Pharmacol 2015 Younis J Clin Pharmacol 2016

Changes in system parameters in CKD

KIDNEY¹⁻⁵ ↓ CL_R

$\downarrow \mathbf{Q}_{\mathbf{R}}$ and kidney weight

↓ **GFR** Stages 1-5: \geq 90 to <15 mL/min/1.73m²

Changes in tubular surface area?

\downarrow Tubular secretion

- ↓ Transporter expression/activity
- Inhibitory effect of uremic solutes
- ↓ Proximal tubule cell number

↓ Renal metabolism – UGT?

LIVER^{2,6-8}

\downarrow CL_H for nonrenally cleared drugs

- Downregulation or inhibition of CYPs
- \downarrow activity OATP (SN-38)
- ↓ UGT1A9, -2B7

GI²

- ↑Gastric emptying time
- ↑ pH
- Expression of CYPs?

¹FDA Renal impairment Guidance ²Rowland Yeo Expert Rev Clin Pharmacol 2011 ³Nolin Am J Kidney Dis 2003 ⁴Scotcher AAPS J 2016 ⁵Hsueh Mol Pharm 2016 ⁶ Fujita Pharm Res 2014 ⁷Zhao J Clin Pharmacol 2012 ⁸Barnes Eur J Clin Pharmacol. 2014

Changes in plasma protein binding in CKD

Parameter		Heathy	GFR <30 mL/min/1.73m ²
Albumin (g/L)	M	44.9	37.6
	F	41.8	35.0
Hematocrit (%)	M	43.0	39.7
	F	38.0	33.2

- Other factors that may affect protein binding:
 - Conformational changes in albumin structure/binding sites
 - Competition for binding sites by uremic solutes
 - Limited data suggest elevated α-acid glycoprotein
- Important to measure fu in RI population for highly bound drugs

$$fu_i = \frac{1}{1 + \frac{(1 - fu) \times [P]_i}{[P] \times fu}}$$

Systematic evaluation of the CKD effect on CYPs

CYP2D6

CYP3A4/3A5

- CYP2D6-mediated clearance decreased in parallel with the severity of CKD
- No apparent relationship between the severity of CKD and CYP3A4/5clearance

Effect on CYP1A2, CYP2C8, CYP2C9 and CYP2C19 – Poster Tan et al.

Yoshida Clin Pharmacol Ther 2016

PBPK modelling of RI - nonrenal CYPmediated clearance

- Retrospective analysis¹ repaglinide, telithromycin, slidenafil
- CYP abundance in RI extrapolated from clinical data

Bosutinib PBPK²

- Step wise PBPK model development and verification
- RI Virtual population:
- i. Reduced GFR, kidney weight and Q_R
- ii. Reduced hepatic CYP3A4 expression
- iii. Reduced serum albumin and hematocrit

¹Zhao J Clin Pharmacol 2012 ²Ono DMD 2017

Effect of CKD on OATP

- Decrease in clearance in parallel with CKD severity
- Challenges:
 - Lack of binding data in RI subjects
 - Overlap between CYP2C8 and OATP drugs

Poster Tan et al. - ITCW and ASCPT PT-020

PBPK modelling of RI – renally eliminated drugs

System parameters for mechanistic kidney models - healthy vs. RI?

Tubular surface area – accounting for microvilli

Nephron tubule considered as a cylinder

Kriz (1981).The Am. J. Physiol. 241(1):R3.

Both PT cells and Caco-2 cells have extensive microvilli (apical membrane) - ↑surface area.

LoH, DT and CD cells - sparse/ negligible

Welling and Welling (1988) J. Electron. Micr. Tech. 9; 171-85

Tubular surface area - collecting duct requires special consideration!

CCD

OMCD

IMCD

Cortical Collecting Ducts formed by **merging** of app. 10 tubules (i.e. 900,000 nephrons/ kidney \rightarrow 90,000 CCD/ kidney)

No merging in Outer Medulla Collecting Ducts (i.e. 90,000 OMCD/ kidney)

Inner Medulla Collecting Ducts undergo successive dichotomous fusions (i.e. 90,000 IMCD/ kidney → 360 Ducts of Bellini/ kidney)

$$C_x = (d_0 \times NCD_0 \times \pi)e^{\left(\frac{\left(\frac{x \times F}{n}\right) \times \ln\left(\frac{2}{\frac{d_0}{d_n}F}\right)\right)}$$

Scotcher, Eur J Pharm Sci 2016

Minimal tubular reabsorption model

IVIVE – Scaling P_{app} to $CL_{R,int}$

- pH gradient (6.5 7.4)
- Transporter inhibitor cocktail

```
CL<sub>R,int,i</sub> = P<sub>app</sub>× TSA <sub>i</sub>
```

Regional differences in TSA and tubular flow

Scotcher, Eur J Pharm Sci 2016

Performance of the mechanistic tubular reabsorption model – *in vivo* data from healthy

	Proximal tubule only	No correction for microvilli	Reabsorption model
All drugs (n = 45)	2.17 (76%)	5.35 (27%)	1.96 (87%)
Low F _{reab} (n = 17)	1.59 (94%)	5.02 (35%)	1.97 (88%)
Medium F _{reab} (n=12)	1.44 (92%)	8.52 (17%)	1.90 (92%)
High F _{reab} (n = 16)	4.11 (44%)	4.03 (25%)	2.01 (81%)

gmfe (% predicted within 3-fold of observed)

- Proximal tubule can be used as surrogate for low-med F_{reab} (<75%)
- Consideration of correct tubular surface area of key relevance

In vitro-in vivo extrapolation of active renal secretion

Implementation of transporter expression data in PBPK models

Relative expression factor =

OAT3 expression in vivo / OAT3 expression in vitro

Emerging proteomic data for renal transporters/UGTs

Missing data:

- Large cohort of individuals and special populations
- Regional and species differences
- Expression vs. functional activity
- Current REFs estimated using plasma or urinary excretion data
 - 5.3 HEK-OAT3 (pemetrexed)
 - 2.3 HEK-OCT2 (metformin)
 - 3 HEK-MATE1 (metformin)

Scotcher AAPS J 2016 Part II; Prasad Drug Metab Dispos 2016; Knights Br J Clin Pharmacol 2016; Posada Drug Metab Dispos 2015; Burt EJPS 2016

Renal PBPK models – special populations

Data available (quantitative, human)

Limited or conflicting data

Scotcher et al AAPS J 2016

Mechanistic digoxin kidney model: prediction of CL_R in moderate to severe renal impairment

- Existing PBPK model for digoxin incorporates transport by P-gp in liver and intestine (Neuhoff et al, J Pharm Sci, 2013)
- Consider role of P-gp and OATP4C1 (uptake) in kidney
- Availability of clinical data in healthy, elderly and different stages of RI

Development, verification and application of digoxin mechanistic kidney model

Mechanistic digoxin kidney model: prediction of CL_R in renal impairment

Scenarios tested in digoxin model:

- **1.** Reduction in GFR alone
- 2. Modification of both GFR and active secretion
 - **a.** \downarrow OATP4C1 expression per million proximal tubule cells*
 - **b.** \downarrow **P-gp expression per million proximal tubule cells**^{*}
 - c. \downarrow proximal tubule cellularity (PTCPGK)
 - d. ↓OATP4C1 expression or proximal tubule cellularity proportional to changes in GFR

* Reflects also \downarrow transporter activity due to inhibition by uremic solutes

Scotcher et al, JPET 2017, ASCPT – Quantitative Pharmacology, PII-122

Prediction of digoxin CL_R in moderate to severe renal impairment – reduction in GFR

Assumption:

• NO changes in active secretion in renal impairment

Scotcher et al, JPET 2017

Mechanistic digoxin kidney model: prediction of CL_R in severe renal impairment

Additional mechanisms considered: i) \downarrow transporter expression or ii) \downarrow number of tubular cells

Mechanistic kidney model for digoxin: renal impairment

 OATP4C1 abundance and PTCPGK parameters changed proportionally to the change in GFR from the population representative

Take home message

- Assumption that secretion does not change in renal impairment over-estimated digoxin CL_R
- Different mechanisms considered for active secretion in RI-PBPK model
 - Comparable NET effect on the predicted systemic exposure and CL_R
 - Predicted dynamics inside proximal tubule cells different implications for nephrotoxicity or transporter-mediated DDIs
- Integrated bottom up-top down approaches important for stepwise RI-PBPK model development and verification
 - Enhanced clinical trial design/adequate clinical data

Acknowledgements

The University of Manchester

Daniel Scotcher Andres Olivares-Morales Hitesh Mistry

Chris Jones

Shiew-Mei Huang, Ping Zhao, Lei Zhang Mingliang Tan

Amin Rostami Leon Aarons Malcolm Rowland

Genentech A Member of the Roche Group

Kenta Yoshida

Maria Posada, Stephen Hall

CAPKR consortium

http://research.bmh.manchester.ac.uk/capkr/