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Outline of the presentation

 Physiological changes in renal impairment

 PBPK modelling of RI

A. Nonrenally cleared drugs

B. Renally eliminated drugs
 System data needed for mechanistic kidney models
 Drug-transporter interaction in renal impairment - digoxin example



Renal elimination of drugs

 Active uptake via OAT1/3, OCT2 paired with efflux transporters MRP2/4, MATEs

 Proximal tubule cells also express drug metabolising enzymes

 Reabsorption - generally passive, active reabsorption via OAT4, PEPT1/2

UGT2B7, 
UGT1A9



Neuhoff S, Gaohua L, Burt H, Jamei M, Li L, Tucker G, et al. Accounting for Transporters in Renal Clearance: Towards a Mechanistic Kidney Model (Mech KiM). 
In: Sugiyama Y, Steffansen B, editors. Transporters in Drug Development: Springer New York; 2013. p. 155-77.
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Prediction of renal tDDIs and nephrotoxicity

 Recent examples – cidofovir, rivaroxaban, metformin, lesinurad1-3

 In vitro transporter kinetic data and certain system parameters still sparse4

UGT2B7, 
UGT1A9

1Hsu Clin Pharmacokinet 2014, 2Grillo BDD 2012, 3Burt EJPS 2016,  4Scotcher AAPS J 2016 



Where we can expect PBPK modelling to 
inform drug labelling in the future?

Jadhav J Clin Pharmacol 2015 
Younis J Clin Pharmacol 2016

 Large % of drug labels for FDA approved drugs in 2013-14 lack
dose recommendations in RI



Changes in system parameters in CKD

KIDNEY1-5 ↓ CLR

↓ QR and kidney weight 

↓ GFR
Stages 1-5: ≥ 90 to <15 mL/min/1.73m2

Changes in tubular surface area?

↓ Tubular secretion
 ↓ Transporter expression/activity
 Inhibitory effect of uremic solutes
 ↓ Proximal tubule cell number

↓ Renal metabolism – UGT?

LIVER2,6-8

↓ CLH for nonrenally cleared drugs 

 Downregulation or inhibition of CYPs
 ↓ activity OATP (SN-38)
 ↓ UGT1A9, -2B7

GI2

 ↑Gastric emptying time
 ↑ pH
 Expression of CYPs?

1FDA Renal impairment Guidance 2Rowland Yeo Expert Rev Clin Pharmacol 2011 3Nolin Am J Kidney Dis 2003 4Scotcher AAPS J 2016
5Hsueh Mol Pharm 2016 6 Fujita Pharm Res 2014 7Zhao J Clin Pharmacol 2012 8Barnes Eur J Clin Pharmacol. 2014



Changes in plasma protein binding in CKD 

 Other factors that may affect protein binding:
 Conformational changes in albumin structure/binding sites
 Competition for binding sites by uremic solutes
 Limited data suggest elevated α-acid glycoprotein

Parameter Heathy
GFR 

<30 mL/min/1.73m2

Albumin (g/L)           M
F

44.9
41.8

37.6
35.0

Hematocrit (%)         M
F

43.0
38.0

39.7
33.2

1 Rowland Yeo Expert Rev Clin Pharmacol 2011

 Important to measure fu in RI population for highly bound drugs



Systematic evaluation of the CKD effect on CYPs

CYP2D6

Effect on CYP1A2, CYP2C8, CYP2C9 and CYP2C19 – Poster Tan et al. 
Yoshida Clin Pharmacol Ther 2016

CYP3A4/3A5

 CYP2D6-mediated clearance decreased in parallel with the severity of CKD

 No apparent relationship between the severity of CKD and CYP3A4/5-
clearance



PBPK modelling of RI - nonrenal CYP-
mediated  clearance

Bosutinib PBPK2

 Step wise PBPK model development 
and verification

 RI Virtual population: 
i. Reduced GFR, kidney weight and QR

ii. Reduced hepatic CYP3A4 expression
iii. Reduced serum albumin and hematocrit

Severe RI – s.d.

Healthy – s.d. Retrospective analysis1 –
repaglinide, telithromycin, slidenafil

 CYP abundance in RI extrapolated 
from clinical data

1Zhao J Clin Pharmacol 2012 2Ono DMD 2017



Effect of CKD on OATP

 Decrease in clearance in parallel with CKD severity

 Challenges: 
 Lack of binding data in RI subjects
 Overlap between CYP2C8 and OATP drugs

Poster Tan et al. - ITCW and ASCPT PT-020 



PBPK modelling of RI – renally eliminated drugs

System parameters for mechanistic kidney models -
healthy vs. RI?



Tubular surface area – accounting for microvilli

Nephron tubule considered 
as a cylinder

Both PT cells and Caco-2 cells have
extensive microvilli (apical membrane) -
↑surface area.

Area = 2 π r h
x number nephrons 

Welling and Welling (1988) J. Electron. Micr. Tech. 9; 171-85

(mL/ min) (cm/ min) (cm2)
CLR,int,reab,i = Papp × 𝐓𝐓𝐓𝐓𝐓𝐓𝐢𝐢

LoH, DT and CD cells - sparse/ negligible
microvilli

Kriz (1981).The Am. J. Physiol. 241(1):R3.



Cortical Collecting Ducts formed by merging of app. 10 tubules
(i.e. 900,000 nephrons/ kidney  90,000 CCD/ kidney)

Inner Medulla Collecting Ducts undergo successive 
dichotomous fusions 
(i.e. 90,000 IMCD/ kidney  360 Ducts of Bellini/ kidney)

CCD

OMCD
No merging in Outer Medulla Collecting Ducts
(i.e. 90,000 OMCD/ kidney)

IMCD

𝐶𝐶𝑥𝑥 = 𝑑𝑑0 × 𝑁𝑁𝑁𝑁𝑁𝑁0 × 𝜋𝜋 𝑒𝑒

𝑥𝑥 × 𝐹𝐹
𝑛𝑛 × ln 2

𝑑𝑑0
𝑑𝑑𝑛𝑛

1
𝐹𝐹

Tubular surface area - collecting duct requires 
special consideration!

Scotcher, Eur J Pharm Sci 2016 



Minimal tubular reabsorption model

Scotcher, Eur J Pharm Sci 2016 

• pH gradient (6.5 - 7.4)
• Transporter inhibitor cocktail

IVIVE – Scaling Papp to CLR,int

CLR,int,i = Papp× TSA i

Regional differences in TSA and 
tubular flow



Performance of the mechanistic tubular 
reabsorption model – in vivo data from healthy

gmfe (% predicted within 3-fold of observed)

Proximal tubule 
only

No correction for 
microvilli

Reabsorption 
model

All drugs
(n = 45)

2.17 (76%) 5.35 (27%) 1.96 (87%)

Low Freab
(n = 17) 1.59 (94%) 5.02 (35%) 1.97 (88%)

Medium Freab
(n=12) 1.44 (92%) 8.52 (17%) 1.90 (92%)

High Freab
(n = 16) 4.11 (44%) 4.03 (25%) 2.01 (81%)

 Proximal tubule can be used as surrogate for low-med Freab (<75%) 
 Consideration of correct tubular surface area of key relevance



In vitro-in vivo extrapolation of active renal 
secretion
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Scaling of kinetic parameters
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Scotcher et al , AAPS J, part I  2016

Tubular surface area (Papp) 



Implementation of transporter expression data 
in PBPK models
Relative expression factor =  

OAT3 expression in vivo / OAT3 expression in vitro

 Emerging proteomic data for renal transporters/UGTs

 Missing data:
 Large cohort of individuals and special populations 
 Regional and species differences
 Expression vs. functional activity 

 Current REFs – estimated using plasma or urinary excretion data
 5.3  - HEK-OAT3  (pemetrexed)
 2.3  - HEK-OCT2 (metformin)
 3     - HEK-MATE1  (metformin)

Scotcher AAPS J 2016 Part II; Prasad Drug Metab Dispos 2016; Knights Br J Clin Pharmacol 2016; Posada Drug 
Metab Dispos 2015; Burt EJPS 2016



Renal PBPK models – special populations
System 
Parameters

Populations

Young adults Paediatrics Elderly Renal impairment

Kidney weight/ 
volume

Renal blood flow

GFR Inter-study
variability

Nephron number Highly variable No change after 
birth ‡

Regional tubule
length/ diameter

Variability within 
and between 
studies

Proximal tubule 
only (1 study)

Mainly proximal
tubule 

Limited reports
(qualitative)

PTCPGK Rat data only Limited reports 
(qualitative)

Limited reports
(qualitative)

Transporter 
abundance *

1 study human 
(pooled HKM)
1 study rat

Mouse/ rat data Limited rat data

Data available (quantitative, human)             Limited or conflicting data 

Scotcher et al AAPS J 2016



Mechanistic digoxin kidney model: prediction of 
CLR in moderate to severe renal impairment

Lee et al, CPT (2014)

 Existing PBPK model for digoxin incorporates transport by P-gp in liver and 
intestine  (Neuhoff et al, J Pharm Sci, 2013)

 Consider role of P-gp and OATP4C1 (uptake) in kidney 

 Availability of clinical data in healthy, elderly and different stages of RI



Development, verification and application of 
digoxin mechanistic kidney model 
Model development

Glomerular filtration

CLPD  Same value for all tubular regions

Transporter kinetics

1.IVIVE 
1.P-gp – in vitro Km and Vmax , REF
2.OATP4C1 – not successful 

2. OATP4C1 CLint,T estimated using clinical CLR data              
(19 clinical studies, 214 healthy subjects)

 Calculated using Cockcroft-Gault eq. from serum creatinine
 fu,p from meta-analysis of reported data

Model verification  Simulated vs. observed digoxin plasma 
concentration- and urinary excretion-time profiles

Model application  Elderly
 Renal impairment Scotcher et al, JPET 2017



Mechanistic digoxin kidney model: prediction 
of CLR in renal impairment

Scenarios tested in digoxin model:

1. Reduction in GFR alone

2. Modification of both GFR and active secretion

a. ↓OATP4C1 expression per million proximal tubule cells* 

b. ↓P-gp expression per million proximal tubule cells*

c. ↓ proximal tubule cellularity (PTCPGK)

d. ↓OATP4C1 expression or proximal tubule cellularity proportional 
to changes in GFR

* Reflects also ↓ transporter activity due to inhibition by uremic solutes

Scotcher et al, JPET 2017, ASCPT – Quantitative Pharmacology, PII-122



Prediction of digoxin CLR in moderate to severe 
renal impairment – reduction in GFR 
Assumption:  
 NO changes in active secretion in renal impairment

Over-estimation 
of CLR in RI

Scotcher et al, JPET 2017



Mechanistic digoxin kidney model: prediction of 
CLR in severe renal impairment
Additional mechanisms considered: i) ↓ transporter expression or    
ii) ↓ number of tubular cells 

CLR ratio =
CLR renal impairment
CLR healthy subjects

Change in GFR only
(severe renal impairment;  
GFR = 15 – 30 mL/ min)



Mechanistic kidney model for digoxin: 
renal impairment
 OATP4C1 abundance and PTCPGK parameters changed proportionally to 

the change in GFR from the population representative

----- GFR only   ----- GFR+PTCPGK   ------ GFR+OATP4C1 

Scotcher et al, JPET 2017



Take home message 
 Assumption that secretion does not change in renal impairment 

over-estimated digoxin CLR

 Different mechanisms considered for active secretion in RI-PBPK 
model 

 Comparable NET effect on the predicted systemic exposure and CLR

 Predicted dynamics inside proximal tubule cells different –
implications for nephrotoxicity or transporter-mediated DDIs

 Integrated bottom up-top down approaches important for step-
wise RI-PBPK model development and verification 
 Enhanced clinical trial design/adequate clinical data  
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